Practice problems for the 430 final

Problem 1. Recall that the soundness theorem says that if $\Gamma \vdash \phi$, then $\Gamma \models \phi$. Prove the soundness theorem, by assuming without proof that every logical axiom is valid (i.e. holds in every model).

Problem 2. Suppose that Σ is a set of sentences that has arbitrarily large finite models. Show that Σ has an infinite model.

Problem 3. Let $\mathcal{L} = \{<\}$ be a first order language where < is a binary relation symbol.

- (1) Show that the theory of infinite linear orders is axiomatizable.
- (2) Show that the theory of infinite linear orders is not finitely axiomatizable.

For the following problem you can make use of the formula $\phi_{code}(x)$ and that $\mathfrak{A} \models \phi_{code}[a]$ iff a codes a sequence. You can also use "lh(a)" to refer to the length of the sequence coded by a.

Problem 4. Write down a Σ_1 formula $\phi_{exp}(e, n, k)$, such that $\mathfrak{A} \models \phi_{exp}[e, n, k]$ iff $e^n = k$. Then write down a Π_1 formula $\phi'_{exp}(e, n, k)$ equivalent to $\phi_{exp}(e, n, k)$.

For the problems below, recall that any model of PA is an end extension of \mathfrak{A} , and as a corollary we get that if ϕ is Σ_1 and true in \mathfrak{A} , then ϕ is true in any model of PA, and so $PA \vdash \phi$. Recall also that we defined a Σ_1 formula $\phi_{prov-\theta}(a,b)$ such that, $\mathfrak{A} \models \phi_{prov-\theta}[a,b]$ iff $T_{\theta} \vdash \phi_a(b)$. Then setting e to be the Gödel number of $\neg \phi_{prov-\theta}(v,v)$, we defined

$$\sigma := \neg \phi_{prov-\theta}(e, e)$$

i.e. σ is exactly $\phi_e(e)$. Note that since $\phi_{prov-\theta}$ is Σ_1 and σ is defined by taking its negation, we have that σ is Π_1 .

Problem 5. (1) Show that $\mathfrak{A} \models \sigma$ iff $T_{\theta} \not\vdash \sigma$.

(2) Prove that $T_{\theta} \not\vdash \sigma$ (and so $\mathfrak{A} \models \sigma$). (Here you will use that σ is Σ_1)

(3) Prove that σ is not Σ_1 (and so not Δ_1).

Problem 6. Show that there is no formula $\phi_{true}(x, y)$ such that

$$\mathfrak{A} \models \phi_{true}[a, b] \text{ iff } \mathfrak{A} \models \phi_a[b].$$

Hint: suppose for contradiction that such a formula exists. Define a sentence σ' is a similar fashion as σ from above. I.e. informally, σ' will be the sentence "I am not true".

Also make sure you know:

- The statements of Soundness, Compactness, Completeness theorems.
- How to show Compactness assuming Completeness; how to prove Soundness.
- The statements and proofs of the First and Second Incompleteness theorems.

- The definition of $\Delta_0, \Sigma_1, \Pi_1, \Delta_1$ formulas.
- How to show that there exists a countable nonstandard model of PA, i.e. a model \mathfrak{B} which is not isomorphic to \mathfrak{A} . Here the proof uses Compactness, to construct a model with an "infinite" element, i.e. an element $b \in \mathfrak{B}$ such that for all $n \in \mathbb{N}$, $S^n_{\mathfrak{B}}(0_{\mathfrak{B}}) <_{\mathfrak{B}} b$.
- How to prove that every model of PA is an end extension of \mathfrak{A} .
- As a corollary to the above: that if ϕ is Σ_1 and $\mathfrak{A} \models \phi$, then any model of PA $\mathfrak{B} \models \phi$. Note that this fact is a key ingredient when showing the First Incompleteness theorem.